Pulse start metal halide systems are used to replace many of the probe start metal halide (MH) systems in the market today. This transition will continue to accelerate as no new MH luminaires between 150W and 500W will be sold. Two of the primary drivers for this shift are improved lamp/ballast performance and legislation.

Why Pulse Start Metal Halide?
PSMH systems are currently the replacement of choice for the old style MH systems. While these systems are slightly more expensive, they offer many advantages over their life that make them well worth the investment. In addition to meeting the 88% EISA efficiency requirement, these systems offer additional advantages including improved lumen depreciation, increased lamp life, and greater efficiency.

What’s Different?
The difference between Probe Start Metal Halide (MH) and Pulse Start Metal Halide (PSMH) is the removal of the probe from the MH lamp and addition of the ignitor to the PSMH system. This ignitor sends 3kV-4kV pulses to strike the lamp in place of the probe. With this change, lamp manufacturers have been able to increase the pressure inside the arc tube resulting in many performance improvements over MH. With the addition of the ignitor, it is important to insure the lamp sockets are pulse rated to 4kV.

NOTE: Because of the ignitor, re-lamping these ballasts is important as an ignitor will continue to pulse if the lamp has reached the end of its life, is damaged, or is missing from the socket. If untreated, this has the potential to degrade the ballast insulation system over time.

Pulse start metal halide systems are used to replace many of the probe start metal halide (MH) systems in the market today. This transition will continue to accelerate as no new MH luminaires between 150W and 500W will be sold. Two of the primary drivers for this shift are improved lamp/ballast performance and legislation.

Why Pulse Start Metal Halide?
PSMH systems are currently the replacement of choice for the old style MH systems. While these systems are slightly more expensive, they offer many advantages over their life that make them well worth the investment. In addition to meeting the 88% EISA efficiency requirement, these systems offer additional advantages including improved lumen depreciation, increased lamp life, and greater efficiency.

Better Lumen Maintenance:
- 400W PSMH = 29,820 mean lumens
- 400W MH = 24,000 mean lumens

Longer lamp life means less maintenance:
- 15kHrs PSMH
- 10kHrs MH

Operating Hours (1,000’s)
0 2 4 6 8 10 12 14 16 18 20

Percentage of Initial Lumens
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

MH
PSMH

www.unvlt.com
Universal Lighting Technologies is a subsidiary of the Panasonic Corporation, a member of the Panasonic Group.
Additional Advantages of Pulse Start Metal Halide

- Better Cold Starting
- Improved Color Rendering
- Faster Warm-up Times
- Shorter Re-strike Times
- Cooler Operation
- Reduced color shift

EISA 2007

The Energy Independence and Security Act of 2007 has started to push the transition from the standard MH systems to the more efficient PSMH systems. OEM manufacturers are now required to meet efficiency standards of 88% for PSMH and 94% for MH systems with few exceptions. These requirements affect all new luminaires from 150W-500W which will be marked *

Currently, PSMH systems are the only ones that can meet the efficiency requirement. While this legislation does not directly affect the distribution and replacement business, when ballasts in these luminaires marked * need replacing, they must be replaced with compliant ballasts.

When conducting any ballast retrofits, attention needs to be given to system compatibility to ensure ballasts will function properly in existing fixtures.

ULTPSMH1013